当前位置: 网站首页 >> 科学研究 >> 学术交流 >> 正文

学术报告会:Stabilizing phenomenon for incompressible fluids

2024年07月15日 10:20  点击:[]

报告题目:Stabilizing phenomenon for incompressible fluids

  人: 吴家宏(美国圣母大学   教授)

报告时间:2024718日周四10:30

报告地点:S3-313


AbstractThis talk presents several examples of a remarkable stabilizing phenomenon.The results of T. Elgindi and T. Hou's group show that the 3D incompressibleEuler equation can blow up in a finite time. Even small data would not help. But when the 3D Euler is coupled with the non-Newtonian stress tensor in the Oldroyd-B model, small smooth data always lead to global and stable solutions.The 3D incompressible Navier-Stokes equation with dissipation in only one direction is not known to always have global solutions even when the initial data are small. However, when this Navier-Stokes is coupled with the magnetic field in the magneto-hydrodynamic system, solutions near a background magnetic field are shown to be always global in time. The magnetic field stabilizes the fluid. Solutions of  the 2D Navier-Stokes in R^2 with dissipation in only one direction are not known to be stable, but the Boussinesq system involving this Navier-Stokes is always stable near the hydrostatic equilibrium. The buoyancy forcing helps stabilize the fluid. In all these examples the systems governing the perturbations can be converted to damped wave equations, which reveal the smoothing and stabilizing effect.


个人简介:

吴家宏,美国圣母大学教授。1988年本科毕业于北京大学,1996年在美国芝加哥大学获得博士学位,师从世界著名数学家Peter Constantin院士。先后工作于美国普林斯顿高等研究院,美国德州大学奥斯汀分校,俄克拉荷马州立大学,现为美国圣母大学教授。吴家宏教授长期致力于非线性流体动力学方程的理论研究,在Navier-Stokes方程、超临界准地转方程,Boussinesq方程和MHD方程的适定性方面取得一系列重要研究成果,研究工作先后发表在CPAMCMPAdv.Math, ARMA等数学顶尖期刊上。



上一条:学术报告会:A Synthetic Regression Model for Large Portfolio Allocation
下一条:2024非线性偏微分方程理论及其应用研讨会

关闭