2024非线性偏微分方程理论及其应用研讨会
6月29日上午(星期六)
主持人
时间
日程表
08:00-08:30
开幕式
陈化
08:30-09:10
张平
On the refined analyticity radius of 3-D generalized Navier-Stokes equations(线上)
09:10-09:50
周忆
Self-dual solution of 3D incompressible Navier-Stokes equations
09:50-10:10
茶歇
朱长江
10:10-10:50
琚强昌
Low Mach number limit of global strong solutions to the full compressible Navier-Stokes equations around the plane Couette flow
10:50-11:30
谢峰
Inviscid limit of solutions to MHD equations
11:30-14:00
午餐: 水园酒店
6月29日下午(星期六)
王亚光
14:00-14:40
吕勇
Unconditional stability of equilibria in thermally driven compressible fluids
14:40-15:20
张映辉
Stability and instability of a generic compressible two-fluid model
15:20-16:00
于慧敏
Temporal periodic solutions of the compressible Euler equations driven by boundary conditions
16:00-16:20
姚正安
16:20-17:00
栗付才
Global existence of classical solutions to a kinetic-MHD model
17:00-17:40
徐夫义
Global unique solution for the 3D viscous compressible pressureless flow with large variations discontinuous density
17:40-18:20
赖宁安
Lifespan estimates for compressible Euler and MHD system
18:30-21:00
晚宴:水园酒店
6月30日上午(星期日)
曹文涛
08:00-08:40
热带海岸河口流体行为生态环境演化建模
08:40-09:20
黎野平
Global well-posedness for 3D two-fluids Euler–Maxwell system
09:20-10:00
缪爽
On stability analysis for steady states of the free boundary hard phase model in general relativity
10:00-10:20
姚磊
10:20-11:00
杨诗武
Decay estimates for the Chern-Simons-Higgs equations
11:00-11:40
王天怡
Isothermal limit of entropy solutions of the Euler equations for isentropic gas dynamics
12:00-14:30
午餐:水园酒店
6月30日下午(星期日)
14:30-15:10
钟新
Incompressible limit of isentropic compressible Navier-Stokes equations with ripped density
15:10-15:50
丁冰冰
Global smooth solutions of 2D quasilinear wave equations with higher order null conditions and short pulse initial data
15:50-16:30
魏昌华
Stabilizing effect of the spacetime expansion on the relativistic Euler equations
16:30-16:50
刘存明
16:50-17:30
尚海锋
Global well-posedness and large time behavior to the 3D anisotropic MHD equations
17:30-18:10
翟小平
The stabilizing effect of temperature, magnetic field and the viscoelastic stress tensor on the inviscid compressible fluids
上一条:学术报告会:Stabilizing phenomenon for incompressible fluids 下一条:学术报告会:从线性代数的观点看微分方程
【关闭】