报告题目:Porous Media equation on graphs
报 告 人:马 力 北京科技大学教授
报告时间:2024年4月22日周一10:00
报告地点:S3-313
摘要:We consider two typical problems on a locally finite connected graph. The first one is to study the Bochner formula for the Laplacian operator on a locally finite connected graph. AS it is well-known that The Bochner formula is a important tool for derive eigenvalue estimates. The other one is to obtain global nontrivial nonnegative solution to porous-media equation via the use of Aronson-Benilan argument. We also give a porous-media equation criterion about stochastic completeness of the graph. We point out that there is not much work in the direction of the study of nonlinear heat equations on locally finite connected graphs.
个人简介:
马力,北京科技大学教授,博士生导师,主要从事几何分析、偏微分方程、非线性分析的研究。在Adv. Math, J. Funct. Anal., Comm. Math.Phy.,J. Math. Pures Appl.等著名SCI期刊上发表120余篇科研论文。国际数学SCI杂志JPDO的编委和国际著名SCI数学杂志“Annales of Global Analysis and Geometry”和Journal of Pseudo-differential Operators and Applications 的编委。
上一条:学术报告会:矩阵奇异值和应用 下一条:学术报告会:Rainbow problems in Ramsey-type theory
【关闭】