报告题目:Global well-posedness and exponential stability for Maxwell’s equations under delayed boundary condition in metamaterials
报 告 人:姚昌辉 郑州大学教授
报告时间:2024年1月19日周五10:00
报告地点:S3-313
摘要:We develop an initial-boundary value problem derived from the Maxwell’s system with a nonWe develop an initial-boundary value problem derived from the Maxwell’s system with a nonlinear feedback-type boundary mechanism in metamaterials, which both involves polarization, magnetization effect and time-localized delay effect in a bounded domain. Based on the nonlinear semigroup theory and the properties of viscoelasticity theory, we show the well-posedness of solution in an appropriate Hilbert space. Under some suitable assumplinear feedback-type boundary mechanism in metamaterials, which both involves polarization, magnetization effect and time-localized delay effect in a bounded domain. Based on the nonlinear semigroup theory and the properties of viscoelasticity theory, we show the well-posedness of solution in an appropriate Hilbert space. Under some suitable assumptions and geometric conditions, we prove the exponential stability of the Maxwell’s system.
个人简介:
姚昌辉,1977年01月出生,博士、河南省特聘教授,博士生导师。中国仿真学会不确定性系统分析与仿真专业委员会常务委员,中国数学会计算数学分会常务理事,河南省数字图形图像学会主任委员。2006年6月在中国科学院获得计算数学专业理学博士学位, 2008在挪威Bergen大学获得应用数学专业哲学博士学位。 曾主持国家自然科学基金青年基金1项,国家自然科学基金面上项目2项,参与完成国家自然科学基金面上项目2项,2021年出版河南省“十四五”普通高等教育规划教材《数值分析》,2022年获得由河南省人民政府颁发的自然科学奖二等奖。
上一条:学术报告会:奇性微分方程周期正解的研究 下一条:学术报告会:随机动力学及应用
【关闭】