当前位置: 网站首页 >> 科学研究 >> 学术交流 >> 正文

学术报告会:Global well-posedness and exponential stability for Maxwell’s equations under delayed boundary condition in metamaterials

2024年01月18日 09:45  点击:[]

报告题目:Global well-posedness and exponential stability for Maxwell’s equations under delayed boundary condition in metamaterials

    人:姚昌辉  郑州大学教授

报告时间:2024119周五1000

报告地点:S3-313

 

摘要:We develop an initial-boundary value problem derived from the Maxwell’s system with a nonWe develop an initial-boundary value problem derived from the Maxwell’s system with a nonlinear feedback-type boundary mechanism in metamaterials, which both involves polarization, magnetization effect and time-localized delay effect in a bounded domain. Based on the nonlinear semigroup theory and the properties of viscoelasticity theory, we show the well-posedness of solution in an appropriate Hilbert space. Under some suitable assumplinear feedback-type boundary mechanism in metamaterials, which both involves polarization, magnetization effect and time-localized delay effect in a bounded domain. Based on the nonlinear semigroup theory and the properties of viscoelasticity theory, we show the well-posedness of solution in an appropriate Hilbert space. Under some suitable assumptions and geometric conditions, we prove the exponential stability of the Maxwell’s system.


个人简介:

姚昌辉,197701月出生,博士、河南省特聘教授,博士生导师。中国仿真学会不确定性系统分析与仿真专业委员会常务委员,中国数学会计算数学分会常务理事,河南省数字图形图像学会主任委员。20066月在中国科学院获得计算数学专业理学博士学位, 2008在挪威Bergen大学获得应用数学专业哲学博士学位。 曾主持国家自然科学基金青年基金1项,国家自然科学基金面上项目2项,参与完成国家自然科学基金面上项目2项,2021年出版河南省“十四五”普通高等教育规划教材《数值分析》,2022年获得由河南省人民政府颁发的自然科学奖二等奖。


上一条:学术报告会:奇性微分方程周期正解的研究
下一条:学术报告会:随机动力学及应用

关闭