姓名:杨建伟
性别:男
学历:研究生
毕业院校:北京工业大学
研究方向:偏微分方程及应用
电子邮箱:yangjianwei@ncwu.edu.cn
教育经历
1. 2007-2010年于北京工业大学应用数理学院应用数学专业学习,2010年获理学博士学位
2. 2005-2007年于北京工业大学应用数理学院应用数学专业学习, 攻读硕士学位,后提前攻博
3. 1991-1995年于信阳师范学院数学与统计学院数学专业学习,1995年获理学学士学位
工作经历
1. 1995-2005年于河南省汝州市第一高级中学工作
2. 2010-至今于华北水利水电大学数学与统计学院工作
3. 2012-2014年于北京应用物理与计算数学所从事博士后研究工作
学术论文
[1] Jianwei Yang, Gaohui Peng, Huiyun Hao and Fengzhen Que, Existence of global weak solution for quantum Navier-Stokes system. International Journal of Mathematics,31(2020),2050038.
[2] Jianwei Yang. Peng Cheng, Low Mach number limit of compressible two-fluid model. Z. Angew. Math. Phys.71(2020).Article number: 9.
[3] Jianwei Yang, Fengzhen que, Zero Mach number limit to compressible quantum magnetohydrodynamic equations withvanishing viscosity coefficients, Math Meth Appl Sci. 42(2019).1745-1758.
[4] Jianwei Yang, Quasi-neutral limit of Euler-Poisson system of compressible fluids coupled to a magnetic field. Z. Angew,Math. Phys. 69 (2018), no. 3, Art. 73, 12 pp.
[5]Jianwei Yang. Zhengyan Wang and Fengxia Ding, Existence of global weak solutions for a 3D Navier-Stokes-Poisson-Korteweg equations. Appl. Anal. 97 (2018), no.4,528-537.
[6] Jianwei Yang and Yong Li, Global existence of weak solution for quantum Navier-Stokes-Poisson equations.J.Math.Phys.58 (2017). no. 7, 071507.12 pp.
[7] Jianwei Yang, Low Mach number limit of the viscous quantum magnetohydrodynamic model. J. Math, Anal. Appl.455(2017), no.2,1110-1123.
[8]Jianwei Yang and Qiangchang Ju,Existence of global weak solutions for Navier-Stokes-Poisson equations with quantumeffect and convergence to incompressible Navier-Stokes equations. Math. Methods Appl. Sci. 38 (2015),3629-3641.
[9] Jianwei Yang, Qiangchang Juand Yong-Fu Yang, Asymptotic limits of Navier-Stokes equations with quantum effects.Z. Angew. Math. Phys. 66 (2015), no. 5, 2271-2283.
[10]Jianwei Yang,Zhingping Ju,From quantum Euler-Maxwell equations to incompressible Euler equations. Appl. Anal.94 (2015),no.11,2201-2210.
[11]Jianwei Yang,Cheng Peng and Yudong Wang, Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electron. Res. Announc. Math. Sci. 22 (2015),20-31.
[12]Jianwei Yang,Zero dielectric constant limit of the full magnet-hydro-dynamics system. Nonlinear Anal. 120 (2015),227-235.
[13] Jianwei Yang and Qiangchang Ju, Convergence of the quantum Navier-Stokes-Poisson equations to the incompressibleEuler equations for general initial data. Nonlinear Anal. Real World Appl. 23 (2015), 148-159.
[14] Jianwei Yang, Combined relaxation and non-relativistic limit of non-isentropic Euler-Maxwell equations. Appl. Anal.94 (2015),no. 4,747-760.
[15] Jianwei Yang and Qiangchang Ju, Global existence of the three-dimensional viscous quantum magnetohydrodynamicmodel. J. Math. Phys. 55 (2014),no. 8, 081501, 12 pp.
[16] Jianwei Yang and Shu Wang, Convergence of compressible Navier-Stokes-Maxwell equations to incompressible Navier-Stokes equations. Sci. China Math. 57(2014), no. 10, 2153-2162.
[17] Jianwei Yang and Shu Wang, Convergence of the Euler- Maxwell two-fluid system to compressible Euler equations. J.Math. Anal. Appl. 417 (2014),no.2,889-903.
[18] Jianwei Yang, Shu Wang and Fuqiang Wang, Approximation of a compressible Euler-Poisson equations by a non-isentropic Euler-Maxwell equations. Appl. Math. Comput. 219 (2013),no.11,6142-6151.
[19] Jianwei Yang, Ruxu Lian and Shu Wang, Incompressible type Euler as scaling limit of compressible Euler-Maxwellequations. Commun. Pure Appl. Anal. 12 (2013),no. 1,503-518.
[20] Jianwei Yang, Shu Wang and Juan Zhao,The relaxation- time limit in the compressible Euler-Maxwell equations.Nonlinear Anal. 74 (2011), no. 18, 7005-7011.
[21] Jianwei Yang, Wang, Shu Wang, Yong Li and Dang Luo, The diffusive relaxation limit of non-isentropic Euler-Maxwellequations for plasmas. J. Math. Anal. Appl. 380 (2011), no. 1,343-353.
[22] Jianwei Yang,Shu Wang and Yong Li and Dang Luo,Rigorous derivation of incompressible type Euler equations fromnon-isentropic Euler-Maxwell equations. Nonlinear Anal.73 (2010),no.11,3613-3625.
[23] Jianwei Yang and Shu Wang, The non-relativistic limit of Euler-Maxwell equations for two-fluid plasma. NonlinearAnal. 72 (2010),no.3-4,1829-1840.
[24] Jianwei Yang and Shu Wang, Convergence of the nonisentropic Euler-Maxwell equations to compressible Euler-Poissonequations. J. Math. Phys. 50(2009),no.12, 123508,15 pp.
讲授课程:
1.本科生:常微分方程,数学分析,概率统计
2.研究生:椭圆与抛物方程引论
上一条:申建伟 下一条:师琳斐
【关闭】