报告题目:Low regularity Fourier integrators for some nonlinear dispersive equations
报告人:吴奕飞 (天津大学应用数学中心 教授/博士生导师)
报告时间:2021年6月29日(周二)上午10:00
腾讯会议ID:238 222 152
摘 要:In this talk, some Fourier integrators are proposed for solving the KdV equation and the nonlinear Schrodinger equation. The designation of the scheme is based on the exponential-type integration and the Phase-Space analysis of the nonlinear dynamics. By the rigorous analysis, the new schemes provide the first-order in Sobolev spaces for rough data, and reduce the regularity requirement of existing methods so far for optimal convergence. Moreover, we also proved that the numerical solutions obeys the almost mass conservation laws. This talk is based on several recent joint works with Buyang Li, Cui Ning, Fangyan Yao and Xiaofei Zhao.
个人简介:
吴奕飞,天津大学应用数学中心教授,博士生导师,国家“万人计划”青年拔尖人才。从事偏微分方程理论和数值计算方面的研究工作,在J. Eur. Math. Soc(JEMS)、Com.Math.Phy.、Adv. Math、Analysis & PDE、Inter. Math. Res. Notice等学术期刊中发表论文,曾主持国家自然科学基金面上项目、青年基金等项目,曾获全国优秀博士论文提名奖,曾担任JAMS等杂志的论文审稿专家。
上一条:学术报告会:超大型航天器结构在轨动力学与控制 下一条:学术报告会:数学之趣,数学之美
【关闭】