报告题目:Global weak solutions to a 2D compressible non-resistivity MHD system with non-monotone pressure law
报告人:张挺 (浙江大学 教授/博导)
报告时间:2021年6月9日下午3:00
腾讯会议ID:347 213 984
摘要:In this talk, we consider a two-dimensional non-resistivity MHD system describing the evolution of viscous compressible and electrically conducting fluids under the action of a vertical magnetic field, with non-monotone pressure law and density-depending viscosity λ =λ(ρ). Using an approximate scheme and the compactness method which Bresch and Jabin proposed in (Bresch and Jabin, 2018), we prove the global existence of weak solutions. (Based on the work with Yu Liu)
个人简介:
张挺,浙江大学数学科学学院教授、博士生导师。主要研究方向为偏微分方程及其应用。考虑了有重要物理背景的一类粘性依赖于密度的Navier-Stokes方程的自由边界问题,研究了一维系统或球面对称系统的整体(局部)适定性、解的渐近性态和收敛率估计等问题;研究了粘性是各向异性的三维Navier-Stokes方程组关于一类大初值的整体适定性问题;利用概率论方法探讨不可压缩 Navier-Stokes方程组在低正则性空间中的适定性问题等。研究成果发表在《Arch. Rational Mech. Anal.》、《Commun. Math. Phys.》等杂志上,文章八十多篇。曾获教育部新世纪人才、青年拔尖、浙江省杰出青年基金等荣誉。
上一条:学术报告会:Asymptotical stability of wave patterns for viscous conservation laws under periodic perturbations 下一条:学术报告会:Introduction to Fractional Calculus, Its Application and Numerical Algorithms for TFPDEs
【关闭】